Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

Simulation of Shor algorithm for discrete logarithm problems with comprehensive pairs of modulo p and order q (2503.23939v2)

Published 31 Mar 2025 in quant-ph

Abstract: The discrete logarithm problem (DLP) over finite fields, commonly used in classical cryptography, has no known polynomial-time algorithm on classical computers. However, Shor has provided its polynomial-time algorithm on quantum computers. Nevertheless, there are only few examples simulating quantum circuits that operate on general pairs of modulo $p$ and order $q$. In this paper, we constructed such quantum circuits and solved DLPs for all 1,860 possible pairs of $p$ and $q$ up to 32 qubits using a quantum simulator with PRIMEHPC FX700. From this, we obtained and verified values of the success probabilities, which had previously been heuristically analyzed by Eker\r{a}. As a result, the detailed waveform shape of the success probability of Shor's algorithm for solving the DLP, known as a periodic function of order $q$, was clarified. Additionally, we generated 1,015 quantum circuits for larger pairs of $p$ and $q$, extrapolated the circuit sizes obtained, and compared them for $p=2048$ bits between safe-prime groups and Schnorr groups. While in classical cryptography, the cipher strength of safe-prime groups and Schnorr groups is the same if $p$ is equal, we quantitatively demonstrated how much the strength of the latter decreases to the bit length of $p$ in the former when using Shor's quantum algorithm. In particular, it was experimentally and theoretically shown that when a ripple carry adder is used in the addition circuit, the cryptographic strength of a Schnorr group with $p=2048$ bits under Shor's algorithm is almost equivalent to that of a safe-prime group with $p=1024$ bits.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com