Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Language-specific Neurons Do Not Facilitate Cross-Lingual Transfer (2503.17456v1)

Published 21 Mar 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Multilingual LLMs aim towards robust natural language understanding across diverse languages, yet their performance significantly degrades on low-resource languages. This work explores whether existing techniques to identify language-specific neurons can be leveraged to enhance cross-lingual task performance of lowresource languages. We conduct detailed experiments covering existing language-specific neuron identification techniques (such as Language Activation Probability Entropy and activation probability-based thresholding) and neuron-specific LoRA fine-tuning with models like Llama 3.1 and Mistral Nemo. We find that such neuron-specific interventions are insufficient to yield cross-lingual improvements on downstream tasks (XNLI, XQuAD) in lowresource languages. This study highlights the challenges in achieving cross-lingual generalization and provides critical insights for multilingual LLMs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.