Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Merge Sort and Quick Sort Performance by Utilizing Alphadev's Sorting Networks as Base Cases (2503.05934v3)

Published 7 Mar 2025 in cs.DS and cs.CC

Abstract: Recent work by Google DeepMind introduced assembly-optimized sorting networks that achieve faster performance for small fixed-size arrays (3-8). In this research, we investigate the integration of these networks as base cases in classical divide-and-conquer sorting algorithms, specifically Merge Sort and Quick Sort, to leverage these efficient sorting networks for small subarrays generated during the recursive process. We conducted benchmarks with 11 different optimization configurations and compared them to classical Merge Sort and Quick Sort. We tested the configurations with random, sorted and nearly sorted arrays. Our optimized Merge Sort, using a configuration of three sorting networks (sizes 6, 7, and 8), achieves at least 1.5x speedup for random and nearly sorted arrays, and at least 2x speedup for sorted arrays, in comparison to classical Merge Sort. This optimized Merge Sort surpasses both classical Quick Sort and similarly optimized Quick Sort variants when sorting random arrays of size 10,000 and larger. When comparing our optimized Quick Sort to classical Quick Sort, we observe a 1.5x speedup using the 3-to-5 configuration on sorted arrays of size 10,000. The 6-to-8 configuration maintains a consistent 1.5x improvement across sorted arrays from 25,000 to 1 million elements. Our findings demonstrate the potential of integrating AI-optimized sorting networks to enhance the performance of classical sorting algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.