Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

A Linear Theory of Multi-Winner Voting (2503.03082v1)

Published 5 Mar 2025 in cs.GT, cs.LG, and econ.TH

Abstract: We introduces a general linear framework that unifies the study of multi-winner voting rules and proportionality axioms, demonstrating that many prominent multi-winner voting rules-including Thiele methods, their sequential variants, and approval-based committee scoring rules-are linear. Similarly, key proportionality axioms such as Justified Representation (JR), Extended JR (EJR), and their strengthened variants (PJR+, EJR+), along with core stability, can fit within this linear structure as well. Leveraging PAC learning theory, we establish general and novel upper bounds on the sample complexity of learning linear mappings. Our approach yields near-optimal guarantees for diverse classes of rules, including Thiele methods and ordered weighted average rules, and can be applied to analyze the sample complexity of learning proportionality axioms such as approximate core stability. Furthermore, the linear structure allows us to leverage prior work to extend our analysis beyond worst-case scenarios to study the likelihood of various properties of linear rules and axioms. We introduce a broad class of distributions that extend Impartial Culture for approval preferences, and show that under these distributions, with high probability, any Thiele method is resolute, CORE is non-empty, and any Thiele method satisfies CORE, among other observations on the likelihood of commonly-studied properties in social choice. We believe that this linear theory offers a new perspective and powerful new tools for designing and analyzing multi-winner rules in modern social choice applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com