Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Supervised Fine-Tuning LLMs to Behave as Pedagogical Agents in Programming Education (2502.20527v1)

Published 27 Feb 2025 in cs.CL and cs.CY

Abstract: LLMs are increasingly being explored in higher education, yet their effectiveness as teaching agents remains underexamined. In this paper, we present the development of GuideLM, a fine-tuned LLM designed for programming education. GuideLM has been integrated into the Debugging C Compiler (DCC), an educational C compiler that leverages LLMs to generate pedagogically sound error explanations. Previously, DCC relied on off-the-shelf OpenAI models, which, while accurate, often over-assisted students by directly providing solutions despite contrary prompting. To address this, we employed supervised fine-tuning (SFT) on a dataset of 528 student-question/teacher-answer pairs, creating two models: GuideLM and GuideLM-mini, fine-tuned on ChatGPT-4o and 4o-mini, respectively. We conducted an expert analysis of 400 responses per model, comparing their pedagogical effectiveness against base OpenAI models. Our evaluation, grounded in constructivism and cognitive load theory, assessed factors such as conceptual scaffolding, clarity, and Socratic guidance. Results indicate that GuideLM and GuideLM-mini improve pedagogical performance, with an 8% increase in Socratic guidance and a 58% improvement in economy of words compared to GPT-4o. However, this refinement comes at the cost of a slight reduction in general accuracy. While further work is needed, our findings suggest that fine-tuning LLMs with targeted datasets is a promising approach for developing models better suited to educational contexts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube