Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Investigating Generalization of One-shot LLM Steering Vectors (2502.18862v1)

Published 26 Feb 2025 in cs.LG and cs.AI

Abstract: Steering vectors have emerged as a promising approach for interpreting and controlling LLMs, but current methods typically require large contrastive datasets that are often impractical to construct and may capture spurious correlations. We propose directly optimizing steering vectors through gradient descent on a single training example, and systematically investigate how these vectors generalize. We consider several steering optimization techniques, including multiple novel ones, and find that the resulting vectors effectively mediate safety-relevant behaviors in multiple models. Indeed, in experiments on an alignment-faking model, we are able to optimize one-shot steering vectors that induce harmful behavior on benign examples and whose negations suppress harmful behavior on malign examples. And in experiments on refusal suppression, we demonstrate that one-shot optimized steering vectors can transfer across inputs, yielding a Harmbench attack success rate of 96.9%. Furthermore, to quantitatively assess steering effectiveness in instruction-tuned models, we develop a novel evaluation framework using sequence probabilities from the corresponding base model. With this framework, we analyze how steering vectors modulate an instruction-tuned LLM's ability to recover from outputting false information, and find that this ability derives from the base model. Overall, our findings suggest that optimizing steering vectors on a single example can mediate misaligned behavior in LLMs, and provide a path toward better understanding the relationship between LLM behavior and activation space structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.