Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Steering Risk Preferences in Large Language Models by Aligning Behavioral and Neural Representations (2505.11615v1)

Published 16 May 2025 in cs.CL and cs.AI

Abstract: Changing the behavior of LLMs can be as straightforward as editing the Transformer's residual streams using appropriately constructed "steering vectors." These modifications to internal neural activations, a form of representation engineering, offer an effective and targeted means of influencing model behavior without retraining or fine-tuning the model. But how can such steering vectors be systematically identified? We propose a principled approach for uncovering steering vectors by aligning latent representations elicited through behavioral methods (specifically, Markov chain Monte Carlo with LLMs) with their neural counterparts. To evaluate this approach, we focus on extracting latent risk preferences from LLMs and steering their risk-related outputs using the aligned representations as steering vectors. We show that the resulting steering vectors successfully and reliably modulate LLM outputs in line with the targeted behavior.

Summary

We haven't generated a summary for this paper yet.