Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MCTS-KBQA: Monte Carlo Tree Search for Knowledge Base Question Answering (2502.13428v1)

Published 19 Feb 2025 in cs.CL and cs.AI

Abstract: This study explores how to enhance the reasoning capabilities of LLMs in knowledge base question answering (KBQA) by leveraging Monte Carlo Tree Search (MCTS). Semantic parsing-based KBQA methods are particularly challenging as these approaches require locating elements from knowledge bases and generating logical forms, demanding not only extensive annotated data but also strong reasoning capabilities. Although recent approaches leveraging LLMs as agents have demonstrated considerable potential, these studies are inherently constrained by their linear decision-making processes. To address this limitation, we propose a MCTS-based framework that enhances LLMs' reasoning capabilities through tree search methodology. We design a carefully designed step-wise reward mechanism that requires only direct prompting of open-source instruction LLMs without additional fine-tuning. Experimental results demonstrate that our approach significantly outperforms linear decision-making methods, particularly in low-resource scenarios. Additionally, we contribute new data resources to the KBQA community by annotating intermediate reasoning processes for existing question-SPARQL datasets using distant supervision. Experimental results on the extended dataset demonstrate that our method achieves comparable performance to fully supervised models while using significantly less training data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guanming Xiong (7 papers)
  2. Haochen Li (42 papers)
  3. Wen Zhao (162 papers)

Summary

We haven't generated a summary for this paper yet.