Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction (2502.09423v1)

Published 13 Feb 2025 in cond-mat.mtrl-sci and cs.AI

Abstract: Crystal structure forms the foundation for understanding the physical and chemical properties of materials. Generative models have emerged as a new paradigm in crystal structure prediction(CSP), however, accurately capturing key characteristics of crystal structures, such as periodicity and symmetry, remains a significant challenge. In this paper, we propose a Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction (TransVAE-CSP), who learns the characteristic distribution space of stable materials, enabling both the reconstruction and generation of crystal structures. TransVAE-CSP integrates adaptive distance expansion with irreducible representation to effectively capture the periodicity and symmetry of crystal structures, and the encoder is a transformer network based on an equivariant dot product attention mechanism. Experimental results on the carbon_24, perov_5, and mp_20 datasets demonstrate that TransVAE-CSP outperforms existing methods in structure reconstruction and generation tasks under various modeling metrics, offering a powerful tool for crystal structure design and optimization.

Summary

We haven't generated a summary for this paper yet.