Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Stage Representation Learning for Analyzing Movement Behavior Dynamics in People Living with Dementia (2502.09173v1)

Published 13 Feb 2025 in cs.LG and cs.AI

Abstract: In remote healthcare monitoring, time series representation learning reveals critical patient behavior patterns from high-frequency data. This study analyzes home activity data from individuals living with dementia by proposing a two-stage, self-supervised learning approach tailored to uncover low-rank structures. The first stage converts time-series activities into text sequences encoded by a pre-trained LLM, providing a rich, high-dimensional latent state space using a PageRank-based method. This PageRank vector captures latent state transitions, effectively compressing complex behaviour data into a succinct form that enhances interpretability. This low-rank representation not only enhances model interpretability but also facilitates clustering and transition analysis, revealing key behavioral patterns correlated with clinicalmetrics such as MMSE and ADAS-COG scores. Our findings demonstrate the framework's potential in supporting cognitive status prediction, personalized care interventions, and large-scale health monitoring.

Summary

We haven't generated a summary for this paper yet.