Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EEG Artifact Detection and Correction with Deep Autoencoders (2502.08686v1)

Published 12 Feb 2025 in cs.LG and cs.AI

Abstract: EEG signals convey important information about brain activity both in healthy and pathological conditions. However, they are inherently noisy, which poses significant challenges for accurate analysis and interpretation. Traditional EEG artifact removal methods, while effective, often require extensive expert intervention. This study presents LSTEEG, a novel LSTM-based autoencoder designed for the detection and correction of artifacts in EEG signals. Leveraging deep learning, particularly LSTM layers, LSTEEG captures non-linear dependencies in sequential EEG data. LSTEEG demonstrates superior performance in both artifact detection and correction tasks compared to other state-of-the-art convolutional autoencoders. Our methodology enhances the interpretability and utility of the autoencoder's latent space, enabling data-driven automated artefact removal in EEG its application in downstream tasks. This research advances the field of efficient and accurate multi-channel EEG preprocessing, and promotes the implementation and usage of automated EEG analysis pipelines for brain health applications.

Summary

We haven't generated a summary for this paper yet.