Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DetVPCC: RoI-based Point Cloud Sequence Compression for 3D Object Detection (2502.04804v1)

Published 7 Feb 2025 in cs.CV

Abstract: While MPEG-standardized video-based point cloud compression (VPCC) achieves high compression efficiency for human perception, it struggles with a poor trade-off between bitrate savings and detection accuracy when supporting 3D object detectors. This limitation stems from VPCC's inability to prioritize regions of different importance within point clouds. To address this issue, we propose DetVPCC, a novel method integrating region-of-interest (RoI) encoding with VPCC for efficient point cloud sequence compression while preserving the 3D object detection accuracy. Specifically, we augment VPCC to support RoI-based compression by assigning spatially non-uniform quality levels. Then, we introduce a lightweight RoI detector to identify crucial regions that potentially contain objects. Experiments on the nuScenes dataset demonstrate that our approach significantly improves the detection accuracy. The code and demo video are available in supplementary materials.

Summary

We haven't generated a summary for this paper yet.