Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

$t$-Testing the Waters: Empirically Validating Assumptions for Reliable A/B-Testing (2502.04793v2)

Published 7 Feb 2025 in stat.ME and cs.LG

Abstract: A/B-tests are a cornerstone of experimental design on the web, with wide-ranging applications and use-cases. The statistical $t$-test comparing differences in means is the most commonly used method for assessing treatment effects, often justified through the Central Limit Theorem (CLT). The CLT ascertains that, as the sample size grows, the sampling distribution of the Average Treatment Effect converges to normality, making the $t$-test valid for sufficiently large sample sizes. When outcome measures are skewed or non-normal, quantifying what "sufficiently large" entails is not straightforward. To ensure that confidence intervals maintain proper coverage and that $p$-values accurately reflect the false positive rate, it is critical to validate this normality assumption. We propose a practical method to test this, by analysing repeatedly resampled A/A-tests. When the normality assumption holds, the resulting $p$-value distribution should be uniform, and this property can be tested using the Kolmogorov-Smirnov test. This provides an efficient and effective way to empirically assess whether the $t$-test's assumptions are met, and the A/B-test is valid. We demonstrate our methodology and highlight how it helps to identify scenarios prone to inflated Type-I errors. Our approach provides a practical framework to ensure and improve the reliability and robustness of A/B-testing practices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)