Papers
Topics
Authors
Recent
2000 character limit reached

Deep Reinforcement Learning Enabled Persistent Surveillance with Energy-Aware UAV-UGV Systems for Disaster Management Applications (2502.02666v1)

Published 4 Feb 2025 in cs.RO

Abstract: Integrating Unmanned Aerial Vehicles (UAVs) with Unmanned Ground Vehicles (UGVs) provides an effective solution for persistent surveillance in disaster management. UAVs excel at covering large areas rapidly, but their range is limited by battery capacity. UGVs, though slower, can carry larger batteries for extended missions. By using UGVs as mobile recharging stations, UAVs can extend mission duration through periodic refueling, leveraging the complementary strengths of both systems. To optimize this energy-aware UAV-UGV cooperative routing problem, we propose a planning framework that determines optimal routes and recharging points between a UAV and a UGV. Our solution employs a deep reinforcement learning (DRL) framework built on an encoder-decoder transformer architecture with multi-head attention mechanisms. This architecture enables the model to sequentially select actions for visiting mission points and coordinating recharging rendezvous between the UAV and UGV. The DRL model is trained to minimize the age periods (the time gap between consecutive visits) of mission points, ensuring effective surveillance. We evaluate the framework across various problem sizes and distributions, comparing its performance against heuristic methods and an existing learning-based model. Results show that our approach consistently outperforms these baselines in both solution quality and runtime. Additionally, we demonstrate the DRL policy's applicability in a real-world disaster scenario as a case study and explore its potential for online mission planning to handle dynamic changes. Adapting the DRL policy for priority-driven surveillance highlights the model's generalizability for real-time disaster response.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.