Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GraphMinNet: Learning Dependencies in Graphs with Light Complexity Minimal Architecture (2502.00282v1)

Published 1 Feb 2025 in cs.LG

Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable success in various applications, yet they often struggle to capture long-range dependencies (LRD) effectively. This paper introduces GraphMinNet, a novel GNN architecture that generalizes the idea of minimal Gated Recurrent Units to graph-structured data. Our approach achieves efficient LRD modeling with linear computational complexity while maintaining permutation equivariance and stability. The model incorporates both structural and positional information through a unique combination of feature and positional encodings, leading to provably stronger expressiveness than the 1-WL test. Theoretical analysis establishes that GraphMinNet maintains non-decaying gradients over long distances, ensuring effective long-range information propagation. Extensive experiments on ten diverse datasets, including molecular graphs, image graphs, and synthetic networks, demonstrate that GraphMinNet achieves state-of-the-art performance while being computationally efficient. Our results show superior performance on 6 out of 10 datasets and competitive results on the others, validating the effectiveness of our approach in capturing both local and global graph structures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.