A universal total anomalous dissipator
Abstract: For all $\alpha\in(0,1)$, we construct an explicit divergence-free vector field $V\in L\infty_tC\alpha_x \cap C{\frac{\alpha}{1-\alpha}}_t L\infty_x$ so that the solutions to the drift-diffusion equations $$\partial_t\theta\kappa-\kappa\Delta\theta\kappa+V\cdot\nabla\theta\kappa=0$$ exhibit asymptotic total dissipation for all mean-zero initial data: $\lim_{\kappa\rightarrow 0}|\theta\kappa(1,\cdot)|_{L2}=0$. Additionally, we give explicit rates in $\kappa$ and uniform dependence on initial data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.