Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SedarEval: Automated Evaluation using Self-Adaptive Rubrics (2501.15595v1)

Published 26 Jan 2025 in cs.CV

Abstract: The evaluation paradigm of LLM-as-judge gains popularity due to its significant reduction in human labor and time costs. This approach utilizes one or more LLMs to assess the quality of outputs from other LLMs. However, existing methods rely on generic scoring rubrics that fail to consider the specificities of each question and its problem-solving process, compromising precision and stability in assessments. Inspired by human examination scoring processes, we propose a new evaluation paradigm based on self-adaptive rubrics. Specifically, we create detailed scoring rubrics for each question, capturing the primary and secondary criteria in a structured format of scoring and deduction points that mimic a human evaluator's analytical process. Building on this paradigm, we further develop a novel benchmark called SedarEval, which covers a range of domains including long-tail knowledge, mathematics, coding, and logical reasoning. SedarEval consists of 1,000 meticulously crafted questions, each with its own self-adaptive rubric. To further streamline the evaluation, we train a specialized evaluator LLM (evaluator LM) to supplant human graders. Using the same training data, our evaluator LM achieves a higher concordance rate with human grading results than other paradigms, including GPT-4, highlighting the superiority and efficiency of our approach. We release our dataset at https://github.com/wwn1233/sedareval.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com