Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CNN-based TEM image denoising from first principles (2501.11225v1)

Published 20 Jan 2025 in cond-mat.mtrl-sci, cs.CV, and eess.IV

Abstract: Transmission electron microscope (TEM) images are often corrupted by noise, hindering their interpretation. To address this issue, we propose a deep learning-based approach using simulated images. Using density functional theory calculations with a set of pseudo-atomic orbital basis sets, we generate highly accurate ground truth images. We introduce four types of noise into these simulations to create realistic training datasets. Each type of noise is then used to train a separate convolutional neural network (CNN) model. Our results show that these CNNs are effective in reducing noise, even when applied to images with different noise levels than those used during training. However, we observe limitations in some cases, particularly in preserving the integrity of circular shapes and avoiding visible artifacts between image patches. To overcome these challenges, we propose alternative training strategies and future research directions. This study provides a valuable framework for training deep learning models for TEM image denoising.

Summary

We haven't generated a summary for this paper yet.