Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Task-Level Optimal Prompts for Visual In-Context Learning (2501.08841v1)

Published 15 Jan 2025 in cs.AI and cs.CV

Abstract: With the development of Vision Foundation Models (VFMs) in recent years, Visual In-Context Learning (VICL) has become a better choice compared to modifying models in most scenarios. Different from retraining or fine-tuning model, VICL does not require modifications to the model's weights or architecture, and only needs a prompt with demonstrations to teach VFM how to solve tasks. Currently, significant computational cost for finding optimal prompts for every test sample hinders the deployment of VICL, as determining which demonstrations to use for constructing prompts is very costly. In this paper, however, we find a counterintuitive phenomenon that most test samples actually achieve optimal performance under the same prompts, and searching for sample-level prompts only costs more time but results in completely identical prompts. Therefore, we propose task-level prompting to reduce the cost of searching for prompts during the inference stage and introduce two time-saving yet effective task-level prompt search strategies. Extensive experimental results show that our proposed method can identify near-optimal prompts and reach the best VICL performance with a minimal cost that prior work has never achieved.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube