Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Machine Learning for Sentiment Analysis of Imported Food in Trinidad and Tobago (2412.19781v1)

Published 27 Dec 2024 in cs.CL and cs.LG

Abstract: This research investigates the performance of various machine learning algorithms (CNN, LSTM, VADER, and RoBERTa) for sentiment analysis of Twitter data related to imported food items in Trinidad and Tobago. The study addresses three primary research questions: the comparative accuracy and efficiency of the algorithms, the optimal configurations for each model, and the potential applications of the optimized models in a live system for monitoring public sentiment and its impact on the import bill. The dataset comprises tweets from 2018 to 2024, divided into imbalanced, balanced, and temporal subsets to assess the impact of data balancing and the COVID-19 pandemic on sentiment trends. Ten experiments were conducted to evaluate the models under various configurations. Results indicated that VADER outperformed the other models in both multi-class and binary sentiment classifications. The study highlights significant changes in sentiment trends pre- and post-COVID-19, with implications for import policies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.