Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A novel necessary and sufficient condition for the stability of $2\times 2$ first-order linear hyperbolic systems (2412.13929v2)

Published 18 Dec 2024 in math.OC and math.AP

Abstract: In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a St\'ep\'an--Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.