Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Relation of Delay Equations to First-Order Hyperbolic Partial Differential Equations (1302.1128v1)

Published 5 Feb 2013 in math.OC, cs.SY, math.AP, and math.DS

Abstract: This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on the boundary and/or on the differential equation. An illustrative example shows that the conversion of a system described by a single first-order hyperbolic partial differential equation to an integral delay system can simplify considerably the solution of the corresponding robust feedback stabilization problem.

Citations (83)

Summary

We haven't generated a summary for this paper yet.