Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Wearable Accelerometer Foundation Models for Health via Knowledge Distillation (2412.11276v2)

Published 15 Dec 2024 in cs.LG, cs.AI, and eess.SP

Abstract: Modern wearable devices can conveniently record various biosignals in the many different environments of daily living, enabling a rich view of individual health. However, not all biosignals are the same: high-fidelity biosignals, such as photoplethysmogram (PPG), contain more physiological information, but require optical sensors with a high power footprint. Alternatively, a lower-fidelity biosignal such as accelerometry has a significantly smaller power footprint and is available in almost any wearable device. While accelerometry is widely used for activity recognition and fitness, it is less explored for health biomarkers and diagnosis. Here, we show that an accelerometry foundation model can predict a wide variety of health targets. To achieve improved performance, we distill representational knowledge from PPG encoders to accelerometery encoders using 20 million minutes of unlabeled data, collected from ~172K participants in the Apple Heart and Movement Study under informed consent. We observe strong cross-modal alignment on unseen data, e.g., 99.2% top-1 accuracy for retrieving PPG embeddings from accelerometry embeddings. We show that distilled accelerometry encoders have significantly more informative representations compared to self-supervised or supervised encoders trained directly on accelerometry data, observed by at least 23%-49% improved performance for predicting heart rate and heart rate variability. We also show that distilled accelerometry encoders are readily predictive of a wide array of downstream health targets, i.e., they are generalist foundation models. We believe accelerometry foundation models for health may unlock new opportunities for developing digital biomarkers from any wearable device.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.