2000 character limit reached
Computational Explorations of Total Variation Distance (2412.10370v1)
Published 13 Dec 2024 in cs.DS and cs.CC
Abstract: We investigate some previously unexplored (or underexplored) computational aspects of total variation (TV) distance. First, we give a simple deterministic polynomial-time algorithm for checking equivalence between mixtures of product distributions, over arbitrary alphabets. This corresponds to a special case, whereby the TV distance between the two distributions is zero. Second, we prove that unless $\mathsf{NP} \subseteq \mathsf{RP}$, it is impossible to efficiently estimate the TV distance between arbitrary Ising models, even in a bounded-error randomized setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.