Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Deterministically Approximating Total Variation Distance (2309.14696v1)

Published 26 Sep 2023 in cs.DS and math.PR

Abstract: Total variation distance (TV distance) is an important measure for the difference between two distributions. Recently, there has been progress in approximating the TV distance between product distributions: a deterministic algorithm for a restricted class of product distributions (Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan and Vinodchandran 2023) and a randomized algorithm for general product distributions (Feng, Guo, Jerrum and Wang 2023). We give a deterministic fully polynomial-time approximation algorithm (FPTAS) for the TV distance between product distributions. Given two product distributions $\mathbb{P}$ and $\mathbb{Q}$ over $[q]n$, our algorithm approximates their TV distance with relative error $\varepsilon$ in time $O\bigl( \frac{qn2}{\varepsilon} \log q \log \frac{n}{\varepsilon \Delta_{\text{TV}}(\mathbb{P},\mathbb{Q}) } \bigr)$. Our algorithm is built around two key concepts: 1) The likelihood ratio as a distribution, which captures sufficient information to compute the TV distance. 2) We introduce a metric between likelihood ratio distributions, called the minimum total variation distance. Our algorithm computes a sparsified likelihood ratio distribution that is close to the original one w.r.t. the new metric. The approximated TV distance can be computed from the sparsified likelihood ratio. Our technique also implies deterministic FPTAS for the TV distance between Markov chains.

Citations (4)

Summary

We haven't generated a summary for this paper yet.