Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Predicting Organic-Inorganic Halide Perovskite Photovoltaic Performance from Optical Properties of Constituent Films through Machine Learning (2412.09638v1)

Published 6 Dec 2024 in cond-mat.mtrl-sci, cs.LG, and physics.comp-ph

Abstract: We demonstrate a ML approach that accurately predicts the current-voltage behavior of 3D/2D-structured (FAMA)Pb(IBr)3/OABr hybrid organic-inorganic halide perovskite (HOIP) solar cells under AM1.5 illumination. Our neural network algorithm is trained on measured responses from several hundred HOIP solar cells, using three simple optical measurements of constituent HOIP films as input: optical transmission spectrum, spectrally-resolved photoluminescence, and time-resolved photoluminescence, from which we predict the open-circuit voltage (Voc), short-circuit current (Jsc), and fill factors (FF) values of solar cells that contain the HOIP active layers. Determined average prediction accuracies for 95 % of the predicted Voc, Jsc, and FF values are 91%, 94% and 89%, respectively, with R2 coefficients of determination of 0.47, 0.77, and 0.58, respectively. Quantifying the connection between ML predictions and physical parameters extracted from the measured HOIP films optical properties, allows us to identify the most significant parameters influencing the prediction results. With separate ML-classifying algorithms, we identify degraded solar cells using the same optical input data, achieving over 90% classification accuracy through support vector machine, cross entropy loss, and artificial neural network algorithms. To our knowledge, the demonstrated regression and classification work is the first to use ML to predict device photovoltaic properties solely from the optical properties of constituent materials.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.