Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accurate Crystal Structure Prediction of New 2D Hybrid Organic Inorganic Perovskites (2403.06955v1)

Published 11 Mar 2024 in cond-mat.mtrl-sci and cs.LG

Abstract: Low dimensional hybrid organic-inorganic perovskites (HOIPs) represent a promising class of electronically active materials for both light absorption and emission. The design space of HOIPs is extremely large, since a diverse space of organic cations can be combined with different inorganic frameworks. This immense design space allows for tunable electronic and mechanical properties, but also necessitates the development of new tools for in silico high throughput analysis of candidate structures. In this work, we present an accurate, efficient, transferable and widely applicable machine learning interatomic potential (MLIP) for predicting the structure of new 2D HOIPs. Using the MACE architecture, an MLIP is trained on 86 diverse experimentally reported HOIP structures. The model is tested on 73 unseen perovskite compositions, and achieves chemical accuracy with respect to the reference electronic structure method. Our model is then combined with a simple random structure search algorithm to predict the structure of hypothetical HOIPs given only the proposed composition. Success is demonstrated by correctly and reliably recovering the crystal structure of a set of experimentally known 2D perovskites. Such a random structure search is impossible with ab initio methods due to the associated computational cost, but is relatively inexpensive with the MACE potential. Finally, the procedure is used to predict the structure formed by a new organic cation with no previously known corresponding perovskite. Laboratory synthesis of the new hybrid perovskite confirms the accuracy of our prediction. This capability, applied at scale, enables efficient screening of thousands of combinations of organic cations and inorganic layers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. D. Weber, “Ch3nh3pbx3, ein pb(ii)-system mit kubischer perowskitstruktur / ch3nh3pbx3, a pb(ii)-system with cubic perovskite structure,” Zeitschrift für Naturforschung B, vol. 33, no. 12, pp. 1443–1445, 1978. [Online]. Available: https://doi.org/10.1515/znb-1978-1214
  2. L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, and M. G. Kanatzidis, “Hybrid dion–jacobson 2d lead iodide perovskites,” Journal of the American Chemical Society, vol. 140, no. 10, pp. 3775–3783, 2018, pMID: 29465246. [Online]. Available: https://doi.org/10.1021/jacs.8b00542
  3. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis, “Ruddlesden–popper hybrid lead iodide perovskite 2d homologous semiconductors,” Chemistry of Materials, vol. 28, no. 8, pp. 2852–2867, 2016. [Online]. Available: https://doi.org/10.1021/acs.chemmater.6b00847
  4. C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J.-C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, A. D. Mohite, and M. G. Kanatzidis, “High members of the 2d ruddlesden-popper halide perovskites: Synthesis, optical properties, and solar cells of (ch3(ch2)3nh3)2(ch3nh3)4pb5i16,” Chem, vol. 2, no. 3, pp. 427–440, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2451929417300736
  5. L. Mao, C. C. Stoumpos, and M. G. Kanatzidis, “Two-dimensional hybrid halide perovskites: Principles and promises,” Journal of the American Chemical Society, vol. 141, no. 3, pp. 1171–1190, 2019, pMID: 30399319. [Online]. Available: https://doi.org/10.1021/jacs.8b10851
  6. I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, “A layered hybrid perovskite solar-cell absorber with enhanced moisture stability,” Angewandte Chemie International Edition, vol. 53, no. 42, pp. 11 232–11 235, 2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201406466
  7. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2d homologous perovskites as light-absorbing materials for solar cell applications,” Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843–7850, 2015, pMID: 26020457. [Online]. Available: https://doi.org/10.1021/jacs.5b03796
  8. G. P. P. Pun, R. Batra, R. Ramprasad, and Y. Mishin, “Physically informed artificial neural networks for atomistic modeling of materials,” Nature Communications, vol. 10, no. 1, p. 2339, may 2019. [Online]. Available: https://doi.org/10.1038/s41467-019-10343-5
  9. E. R. Dohner, E. T. Hoke, and H. I. Karunadasa, “Self-assembly of broadband white-light emitters,” Journal of the American Chemical Society, vol. 136, no. 5, pp. 1718–1721, 2014, pMID: 24422494. [Online]. Available: https://doi.org/10.1021/ja411045r
  10. G. M. Day, “Current approaches to predicting molecular organic crystal structures,” Crystallography Reviews, vol. 17, no. 1, pp. 3–52, 2011. [Online]. Available: https://doi.org/10.1080/0889311X.2010.517526
  11. C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” Journal of Physics: Condensed Matter, vol. 23, no. 5, p. 053201, jan 2011. [Online]. Available: https://dx.doi.org/10.1088/0953-8984/23/5/053201
  12. A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and M. Ceriotti, “Machine learning unifies the modeling of materials and molecules,” Science Advances, vol. 3, no. 12, p. e1701816, 2017. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.1701816
  13. F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi, and M. Ceriotti, “Physics-inspired structural representations for molecules and materials,” Chemical Reviews, vol. 121, pp. 9759–9815, 2021.
  14. K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning for molecular and materials science,” Nature, vol. 559, no. 7715, pp. 547–555, Jul 2018. [Online]. Available: https://doi.org/10.1038/s41586-018-0337-2
  15. V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and G. Csányi, “Gaussian process regression for materials and molecules,” Chemical Reviews, vol. 121, no. 16, pp. 10 073–10 141, 2021.
  16. V. L. Deringer, N. Bernstein, G. Csányi, C. B. Mahmoud, M. Ceriotti, M. Wilson, D. A. Drabold, and S. R. Elliott, “Origins of structural and electronic transitions in disordered silicon,” Nature, vol. 589, pp. 59–64, 1 2021.
  17. J. Behler and M. Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Physical Review Letters, vol. 98, no. 14, 4 2007.
  18. A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons,” Physical Review Letters, vol. 104, no. 13, 4 2010.
  19. A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments,” Phys. Rev. B, vol. 87, p. 184115, May 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.87.184115
  20. A. V. Shapeev, “Moment tensor potentials: A class of systematically improvable interatomic potentials,” Multiscale Modeling Simulation, vol. 14, no. 3, pp. 1153–1173, 2016. [Online]. Available: https://doi.org/10.1137/15M1054183
  21. R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic potentials,” Phys. Rev. B, vol. 99, p. 014104, Jan 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.99.014104
  22. ——, “Atomic cluster expansion of scalar, vectorial, and tensorial properties including magnetism and charge transfer,” Phys. Rev. B, vol. 102, p. 024104, Jul 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.102.024104
  23. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” 2017. [Online]. Available: https://arxiv.org/abs/1704.01212
  24. S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials,” Nature Communications, vol. 13, no. 1, p. 2453, 2022.
  25. I. Batatia, S. Batzner, D. P. Kovács, A. Musaelian, G. N. C. Simm, R. Drautz, C. Ortner, B. Kozinsky, and G. Csanyi, “The design space of e(3)-equivariant atom-centered interatomic potentials,” 5 2022. [Online]. Available: http://arxiv.org/abs/2205.06643
  26. A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon, and E. D. Cubuk, “Scaling deep learning for materials discovery,” Nature, vol. 624, no. 7990, pp. 80–85, Dec 2023. [Online]. Available: https://doi.org/10.1038/s41586-023-06735-9
  27. I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csányi, “Mace: Higher order equivariant message passing neural networks for fast and accurate force fields,” Advances in Neural Information Processing Systems, vol. 35, pp. 11 423–11 436, 2022.
  28. D. P. Kovács, I. Batatia, E. S. Arany, and G. Csányi, “Evaluation of the MACE force field architecture: From medicinal chemistry to materials science,” The Journal of Chemical Physics, vol. 159, no. 4, p. 044118, 07 2023. [Online]. Available: https://doi.org/10.1063/5.0155322
  29. D. P. Kovács, J. H. Moore, N. J. Browning, I. Batatia, J. T. Horton, V. Kapil, W. C. Witt, I.-B. Magdău, D. J. Cole, and G. Csányi, “Mace-off23: Transferable machine learning force fields for organic molecules,” 2023. [Online]. Available: https://arxiv.org/abs/2312.15211
  30. I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R. Advincula, M. Asta, M. Avaylon, W. J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik, S. M. Blau, V. Cărare, J. P. Darby, S. De, F. D. Pia, V. L. Deringer, R. Elijošius, Z. El-Machachi, F. Falcioni, E. Fako, A. C. Ferrari, A. Genreith-Schriever, J. George, R. E. A. Goodall, C. P. Grey, P. Grigorev, S. Han, W. Handley, H. H. Heenen, K. Hermansson, C. Holm, J. Jaafar, S. Hofmann, K. S. Jakob, H. Jung, V. Kapil, A. D. Kaplan, N. Karimitari, J. R. Kermode, N. Kroupa, J. Kullgren, M. C. Kuner, D. Kuryla, G. Liepuoniute, J. T. Margraf, I.-B. Magdău, A. Michaelides, J. H. Moore, A. A. Naik, S. P. Niblett, S. W. Norwood, N. O’Neill, C. Ortner, K. A. Persson, K. Reuter, A. S. Rosen, L. L. Schaaf, C. Schran, B. X. Shi, E. Sivonxay, T. K. Stenczel, V. Svahn, C. Sutton, T. D. Swinburne, J. Tilly, C. van der Oord, E. Varga-Umbrich, T. Vegge, M. Vondrák, Y. Wang, W. C. Witt, F. Zills, and G. Csányi, “A foundation model for atomistic materials chemistry,” 2024. [Online]. Available: https://arxiv.org/abs/2401.00096
  31. “2d perovskites database - the laboratory of new materials for solar energetics.” [Online]. Available: http://pdb.nmse-lab.ru/
  32. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, “The Cambridge Structural Database,” Acta Crystallographica Section B, vol. 72, no. 2, pp. 171–179, Apr 2016. [Online]. Available: https://doi.org/10.1107/S2052520616003954
  33. M.-H. Tremblay, A. Boyington, S. Rigin, J. Jiang, J. Bacsa, K. Al Kurdi, V. N. Khrustalev, R. Pachter, T. V. Timofeeva, N. Jui et al., “Hybrid organic lead iodides: Role of organic cation structure in obtaining 1d chains of face-sharing octahedra vs 2d perovskites,” Chemistry of Materials, vol. 34, no. 3, pp. 935–946, 2022.
  34. A. M. Tokita and J. Behler, “How to train a neural network potential,” The Journal of Chemical Physics, vol. 159, no. 12, p. 121501, 09 2023. [Online]. Available: https://doi.org/10.1063/5.0160326
  35. C. van der Oord, M. Sachs, D. P. Kovács, C. Ortner, and G. Csányi, “Hyperactive learning for data-driven interatomic potentials,” npj Computational Materials, vol. 9, no. 1, p. 168, Sep 2023. [Online]. Available: https://doi.org/10.1038/s41524-023-01104-6
  36. Y. Rubner, C. Tomasi, and L. J. Guibas, “The Earth Mover’s Distance as a Metric for Image Retrieval,” International Journal of Computer Vision, vol. 40, no. 2, pp. 99–121, 2000. [Online]. Available: https://doi.org/10.1023/A:1026543900054
  37. I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csanyi, “Mace: Higher order equivariant message passing neural networks for fast and accurate force fields,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35.   Curran Associates, Inc., 2022, pp. 11 423–11 436. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/4a36c3c51af11ed9f34615b81edb5bbc-Paper-Conference.pdf
  38. A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, “The atomic simulation environment—a python library for working with atoms,” Journal of Physics: Condensed Matter, vol. 29, no. 27, p. 273002, jun 2017. [Online]. Available: https://dx.doi.org/10.1088/1361-648X/aa680e
  39. S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics, vol. 81, no. 1, pp. 511–519, 07 1984. [Online]. Available: https://doi.org/10.1063/1.447334
  40. W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A, vol. 31, pp. 1695–1697, Mar 1985. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.31.1695
  41. D. Packwood, J. Kermode, L. Mones, N. Bernstein, J. Woolley, N. Gould, C. Ortner, and G. Csányi, “A universal preconditioner for simulating condensed phase materials,” The Journal of Chemical Physics, vol. 144, no. 16, p. 164109, 04 2016. [Online]. Available: https://doi.org/10.1063/1.4947024
  42. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, 1996.
  43. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11 169–11 186, Oct 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.54.11169
  44. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, pp. 3865–3868, Oct 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
  45. P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, no. 24, p. 17953, 1994.
  46. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, p. 1758, 1999.
  47. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” The Journal of Chemical Physics, vol. 132, no. 15, p. 154104, 04 2010. [Online]. Available: https://doi.org/10.1063/1.3382344
  48. H. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,” Phys. Rev. B, vol. 13, pp. 5188–5192, Jun 1976. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.13.5188
  49. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymatgen): A robust, open-source python library for materials analysis,” Computational Materials Science, vol. 68, pp. 314–319, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927025612006295
  50. K. Momma and F. Izumi, “VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data,” Journal of Applied Crystallography, vol. 44, no. 6, pp. 1272–1276, Dec 2011. [Online]. Available: https://doi.org/10.1107/S0021889811038970
Citations (2)

Summary

We haven't generated a summary for this paper yet.