Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aligner-Guided Training Paradigm: Advancing Text-to-Speech Models with Aligner Guided Duration (2412.08112v1)

Published 11 Dec 2024 in cs.SD, cs.AI, cs.CL, cs.LG, and eess.AS

Abstract: Recent advancements in text-to-speech (TTS) systems, such as FastSpeech and StyleSpeech, have significantly improved speech generation quality. However, these models often rely on duration generated by external tools like the Montreal Forced Aligner, which can be time-consuming and lack flexibility. The importance of accurate duration is often underestimated, despite their crucial role in achieving natural prosody and intelligibility. To address these limitations, we propose a novel Aligner-Guided Training Paradigm that prioritizes accurate duration labelling by training an aligner before the TTS model. This approach reduces dependence on external tools and enhances alignment accuracy. We further explore the impact of different acoustic features, including Mel-Spectrograms, MFCCs, and latent features, on TTS model performance. Our experimental results show that aligner-guided duration labelling can achieve up to a 16\% improvement in word error rate and significantly enhance phoneme and tone alignment. These findings highlight the effectiveness of our approach in optimizing TTS systems for more natural and intelligible speech generation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haowei Lou (6 papers)
  2. Helen Paik (3 papers)
  3. Wen Hu (75 papers)
  4. Lina Yao (194 papers)