Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancements in Machine Learning and Deep Learning for Early Detection and Management of Mental Health Disorder (2412.06147v1)

Published 9 Dec 2024 in cs.LG and cs.ET

Abstract: For the early identification, diagnosis, and treatment of mental health illnesses, the integration of deep learning (DL) and ML has started playing a significant role. By evaluating complex data from imaging, genetics, and behavioral assessments, these technologies have the potential to significantly improve clinical outcomes. However, they also present unique challenges related to data integration and ethical issues. This survey reviews the development of ML and DL methods for the early diagnosis and treatment of mental health issues. It examines a range of applications, with a particular emphasis on behavioral assessments, genetic and biomarker analysis, and medical imaging for diagnosing diseases like depression, bipolar disorder, and schizophrenia. Predictive modeling for illness progression is further discussed, focusing on the role of risk prediction models and longitudinal studies. Key findings highlight how ML and DL can improve diagnostic accuracy and treatment outcomes while addressing methodological inconsistencies, data integration challenges, and ethical concerns. The study emphasizes the importance of building real-time monitoring systems for individualized treatment, enhancing data fusion techniques, and fostering interdisciplinary collaboration. Future research should focus on overcoming these obstacles to ensure the valuable and ethical application of ML and DL in mental health services.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)

Summary

We haven't generated a summary for this paper yet.