Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Dynamic Interference Prediction for In-X 6G Sub-networks (2412.04876v1)

Published 6 Dec 2024 in cs.IT and math.IT

Abstract: The sixth generation (6G) industrial Sub-networks (SNs) face several challenges in meeting extreme latency and reliability requirements in the order of 0.1-1 ms and 99.999 -to-99.99999 percentile, respectively. Interference management (IM) plays an integral role in addressing these requirements, especially in ultra-dense SN environments with rapidly varying interference induced by channel characteristics, mobility, and resource limitations. In general, IM can be achieved using resource allocation and \textit{accurate} Link adaptation (LA). In this work, we focus on the latter, where we first model interference at SN devices using the spatially consistent 3GPP channel model. Following this, we present a discrete-time dynamic state space model (DSSM) at a SN access point (AP), where interference power values (IPVs) are modeled as latent variables incorporating underlying modeling errors as well as transmission/protocol delays. Necessary approximations are then presented to simplify the DSSM and to efficiently employ the extended Kalman filter (EKF) for interference prediction. Unlike baseline methods, our proposed approach predicts IPVs solely based on the channel quality indicator (CQI) reports available at the SN AP at every transmission time interval (TTI). Numerical results demonstrate that our proposed approach clearly outperforms the conventional baseline. Furthermore, we also show that despite predicting with limited information, our proposed approach consistently achieves a comparable performance w.r.t the off-the-shelf supervised learning based baseline.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com