Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantized and Interpretable Learning Scheme for Deep Neural Networks in Classification Task (2412.03915v1)

Published 5 Dec 2024 in cs.LG and cs.CV

Abstract: Deep learning techniques have proven highly effective in image classification, but their deployment in resourceconstrained environments remains challenging due to high computational demands. Furthermore, their interpretability is of high importance which demands even more available resources. In this work, we introduce an approach that combines saliency-guided training with quantization techniques to create an interpretable and resource-efficient model without compromising accuracy. We utilize Parameterized Clipping Activation (PACT) to perform quantization-aware training, specifically targeting activations and weights to optimize precision while minimizing resource usage. Concurrently, saliency-guided training is employed to enhance interpretability by iteratively masking features with low gradient values, leading to more focused and meaningful saliency maps. This training procedure helps in mitigating noisy gradients and yields models that provide clearer, more interpretable insights into their decision-making processes. To evaluate the impact of our approach, we conduct experiments using famous Convolutional Neural Networks (CNN) architecture on the MNIST and CIFAR-10 benchmark datasets as two popular datasets. We compare the saliency maps generated by standard and quantized models to assess the influence of quantization on both interpretability and classification accuracy. Our results demonstrate that the combined use of saliency-guided training and PACT-based quantization not only maintains classification performance but also produces models that are significantly more efficient and interpretable, making them suitable for deployment in resource-limited settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.