Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Efficient Training for Neural Network Quantization (1912.10207v1)

Published 21 Dec 2019 in cs.CV

Abstract: Quantization reduces computation costs of neural networks but suffers from performance degeneration. Is this accuracy drop due to the reduced capacity, or inefficient training during the quantization procedure? After looking into the gradient propagation process of neural networks by viewing the weights and intermediate activations as random variables, we discover two critical rules for efficient training. Recent quantization approaches violates the two rules and results in degenerated convergence. To deal with this problem, we propose a simple yet effective technique, named scale-adjusted training (SAT), to comply with the discovered rules and facilitates efficient training. We also analyze the quantization error introduced in calculating the gradient in the popular parameterized clipping activation (PACT) technique. Through SAT together with gradient-calibrated PACT, quantized models obtain comparable or even better performance than their full-precision counterparts, achieving state-of-the-art accuracy with consistent improvement over previous quantization methods on a wide spectrum of models including MobileNet-V1/V2 and PreResNet-50.

Citations (40)

Summary

We haven't generated a summary for this paper yet.