Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotics of Linear Regression with Linearly Dependent Data (2412.03702v2)

Published 4 Dec 2024 in stat.ML, cs.LG, cs.SY, and eess.SY

Abstract: In this paper we study the asymptotics of linear regression in settings with non-Gaussian covariates where the covariates exhibit a linear dependency structure, departing from the standard assumption of independence. We model the covariates using stochastic processes with spatio-temporal covariance and analyze the performance of ridge regression in the high-dimensional proportional regime, where the number of samples and feature dimensions grow proportionally. A Gaussian universality theorem is proven, demonstrating that the asymptotics are invariant under replacing the non-Gaussian covariates with Gaussian vectors preserving mean and covariance, for which tools from random matrix theory can be used to derive precise characterizations of the estimation error. The estimation error is characterized by a fixed-point equation involving the spectral properties of the spatio-temporal covariance matrices, enabling efficient computation. We then study optimal regularization, overparameterization, and the double descent phenomenon in the context of dependent data. Simulations validate our theoretical predictions, shedding light on how dependencies influence estimation error and the choice of regularization parameters.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.