Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Occam's LGS: An Efficient Approach for Language Gaussian Splatting (2412.01807v2)

Published 2 Dec 2024 in cs.CV

Abstract: TL;DR: Gaussian Splatting is a widely adopted approach for 3D scene representation, offering efficient, high-quality reconstruction and rendering. A key reason for its success is the simplicity of representing scenes with sets of Gaussians, making it interpretable and adaptable. To enhance understanding beyond visual representation, recent approaches extend Gaussian Splatting with semantic vision-language features, enabling open-set tasks. Typically, these language features are aggregated from multiple 2D views, however, existing methods rely on cumbersome techniques, resulting in high computational costs and longer training times. In this work, we show that the complicated pipelines for language 3D Gaussian Splatting are simply unnecessary. Instead, we follow a probabilistic formulation of Language Gaussian Splatting and apply Occam's razor to the task at hand, leading to a highly efficient weighted multi-view feature aggregation technique. Doing so offers us state-of-the-art results with a speed-up of two orders of magnitude without any compression, allowing for easy scene manipulation. Project Page: https://insait-institute.github.io/OccamLGS/

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.