Generative modeling assisted simulation of measurement-altered quantum criticality (2412.01513v1)
Abstract: In quantum many-body systems, measurements can induce qualitative new features, but their simulation is hindered by the exponential complexity involved in sampling the measurement results. We propose to use machine learning to assist the simulation of measurement-induced quantum phenomena. In particular, we focus on the measurement-altered quantum criticality protocol and generate local reduced density matrices of the critical chain given random measurement results. Such generation is enabled by a physics-preserving conditional diffusion generative model, which learns an observation-indexed probability distribution of an ensemble of quantum states, and then samples from that distribution given an observation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.