Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Linear Probe Penalties Reduce LLM Sycophancy (2412.00967v1)

Published 1 Dec 2024 in cs.AI

Abstract: LLMs are often sycophantic, prioritizing agreement with their users over accurate or objective statements. This problematic behavior becomes more pronounced during reinforcement learning from human feedback (RLHF), an LLM fine-tuning stage intended to align model outputs with human values. Instead of increasing accuracy and reliability, the reward model learned from RLHF often rewards sycophancy. We develop a linear probing method to identify and penalize markers of sycophancy within the reward model, producing rewards that discourage sycophantic behavior. Our experiments show that constructing and optimizing against this surrogate reward function reduces sycophantic behavior in multiple open-source LLMs. Our results suggest a generalizable methodology for reducing unwanted LLM behaviors that are not sufficiently disincentivized by RLHF fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com