Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Galaxy Clustering with LSST: Effects of Number Count Bias from Blending (2411.14564v2)

Published 21 Nov 2024 in astro-ph.CO

Abstract: The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will survey the southern sky to create the largest galaxy catalog to date, and its statistical power demands an improved understanding of systematic effects such as source overlaps, also known as blending. In this work we study how blending introduces a bias in the number counts of galaxies (instead of the flux and colors), and how it propagates into galaxy clustering statistics. We use the $300\,$deg$2$ DC2 image simulation and its resulting galaxy catalog (LSST Dark Energy Science Collaboration et al. 2021) to carry out this study. We find that, for a LSST Year 1 (Y1)-like cosmological analyses, the number count bias due to blending leads to small but statistically significant differences in mean redshift measurements when comparing an observed sample to an unblended calibration sample. In the two-point correlation function, blending causes differences greater than 3$\sigma$ on scales below approximately $10'$, but large scales are unaffected. We fit $\Omega_{\rm m}$ and linear galaxy bias in a Bayesian cosmological analysis and find that the recovered parameters from this limited area sample, with the LSST Y1 scale cuts, are largely unaffected by blending. Our main results hold when considering photometric redshift and a LSST Year 5 (Y5)-like sample.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.