Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LLM-PySC2: Starcraft II learning environment for Large Language Models (2411.05348v2)

Published 8 Nov 2024 in cs.AI

Abstract: The tremendous potential has been demonstrated by LLMs in intelligent decision-making problems, with unprecedented capabilities shown across diverse applications ranging from gaming AI systems to complex strategic planning frameworks. However, the StarCraft II platform, which has been widely adopted for validating decision-making algorithms in the past decade, has not yet provided substantial support for this emerging domain. To address issues that LLMs cannot interface with the hundreds of actions of the pysc2 backend and the lack of native support for multi-agent (MA) collaboration, we propose the LLM-PySC2 environment. This is the first environment that offers LLMs the complete pysc2 action space with sufficient multi-modal information and game Wiki knowledge. With an asynchronous query architecture, the environment efficiently interacts with LLMs that maintain a constant latency regardless of the scale of the agents' population. In the experiments, we evaluated LLMs' decision-making performance in both the macro-decision and micro-operation scenarios, with traditional StarCraft II Multi-Agent Challenge (SMAC) tasks and a series of new proposed. Results indicate that LLMs possess the potential to achieve victories in complex scenarios but cannot constantly generate correct decisions, especially in the recovered pysc2 action space and MA settings. Without task-relevant instructions, the pre-trained models suffer from issues such as hallucinations and inefficient collaboration. Our findings suggest that StarCraft II still challenges in the era of large models, revealing that there is a lot to do to develop an advanced LLM decision-making system, and the proposed LLM-PySC2 environment will support future development of LLM-based decision-making solutions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube