Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Density Functional Theory for Static Correlation in Large Molecules (2411.02254v1)

Published 4 Nov 2024 in physics.chem-ph, physics.comp-ph, and quant-ph

Abstract: A critical challenge for density functional theory (DFT) in practice is its limited ability to treat static electron correlation, leading to errors in its prediction of charges, multiradicals, and reaction barriers. Recently, we combined one- and two-electron reduced density matrix theories with DFT to obtain a universal $O(N3)$ generalization of DFT for static correlation. In this Letter, we enhance the theory's treatment of large molecules by renormalizing the trace of the two-electron identity matrix in the correction using Cauchy-Schwarz inequalities of the electron-electron repulsion matrix. We apply the resulting functional theory to linear hydrogen chains as well as the prediction of the singlet-triplet gap and equilibrium geometries of a series of acenes. This renormalization of the generalized DFT retains the $O(N{3})$ computational scaling of DFT while enabling the accurate treatment of static correlation for a broad range of molecules and materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1994).
  2. R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).
  3. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964).
  4. A. Dreuw and M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes, J. Am. Chem. Soc. 126, 4007 (2004).
  5. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Insights into Current Limitations of Density Functional Theory, Science 321, 792 (2008).
  6. J. M. Montgomery and D. A. Mazziotti, Strong Electron Correlation in Nitrogenase Cofactor, FeMoco, J. Phys. Chem. A 122, 4988 (2018), 1805.08746 .
  7. J.-D. Chai, Density functional theory with fractional orbital occupations, J. Chem. Phys. 136, 154104 (2012), 1201.4866 .
  8. D. Gibney, J.-N. Boyn, and D. A. Mazziotti, Toward a Resolution of the Static Correlation Problem in Density Functional Theory from Semidefinite Programming, J. Phys. Chem. Lett. 12, 385 (2021), 2005.03621 .
  9. A. Bajaj and H. J. Kulik, Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error, J. Phys. Chem. Lett. 12, 3633 (2021).
  10. Y. Mei, Z. Chen, and W. Yang, Exact Second-Order Corrections and Accurate Quasiparticle Energy Calculations in Density Functional Theory, J. Phys. Chem. Lett. 12, 7236 (2021).
  11. N. Q. Su, Unity of Kohn-Sham density-functional theory and reduced-density-matrix-functional theory, Phys. Rev. A 104, 052809 (2021), 2102.00394 .
  12. D. Gibney, J.-N. Boyn, and D. A. Mazziotti, Comparison of Density-Matrix Corrections to Density Functional Theory, J. Chem. Theory Comput. 18, 6600 (2022a), 2212.14369 .
  13. S. Seenithurai and J.-D. Chai, TAO-DFT with the Polarizable Continuum Model, Nanomaterials 13, 1593 (2023).
  14. T. L. Gilbert, Hohenberg-Kohn theorem for nonlocal external potentials, Phys. Rev. B 12, 2111 (1974).
  15. S. M. Valone, Consequences of extending 1‐matrix energy functionals from pure–state representable to all ensemble representable 1 matrices, J. Chem. Phys. 73, 1344 (1980).
  16. A. Müller, Explicit approximate relation between reduced two- and one-particle density matrices, Phys. Lett. A 105, 446 (1984).
  17. S. Goedecker and C. J. Umrigar, Natural Orbital Functional for the Many-Electron Problem, Phys. Rev. Lett. 81, 866 (1998), physics/9805011 .
  18. D. A. Mazziotti, Geminal functional theory: A synthesis of density and density matrix methods, J. Chem. Phys. 112, 10125 (2000a).
  19. M. Piris, Reduced‐Density‐Matrix Mechanics: With Application to Many‐Electron Atoms and Molecules, Adv. Chem. Phys. 134, 385 (2007).
  20. M. Piris, Global Method for Electron Correlation, Phys. Rev. Lett. 119, 063002 (2017), 1708.03719 .
  21. C. Schilling and R. Schilling, Diverging Exchange Force and Form of the Exact Density Matrix Functional, Phys. Rev. Lett. 122, 013001 (2019), 1901.01321 .
  22. J. Schmidt, C. L. Benavides-Riveros, and M. A. L. Marques, Reduced density matrix functional theory for superconductors, Phys. Rev. B 99, 224502 (2019), 1903.01516 .
  23. M. Piris, Global Natural Orbital Functional: Towards the Complete Description of the Electron Correlation, Phys. Rev. Lett. 127, 233001 (2021), 2112.02119 .
  24. C. Schilling and S. Pittalis, Ensemble Reduced Density Matrix Functional Theory for Excited States and Hierarchical Generalization of Pauli’s Exclusion Principle, Phys. Rev. Lett. 127, 023001 (2021), 2106.02560 .
  25. J. Wang and E. J. Baerends, Self-consistent-field method for correlated many-electron systems with an entropic cumulant energy, Physical review letters 128, 013001 (2022).
  26. D. Gibney, J.-N. Boyn, and D. A. Mazziotti, Density Functional Theory Transformed into a One-Electron Reduced-Density-Matrix Functional Theory for the Capture of Static Correlation, J. Phys. Chem. Lett. 13, 1382 (2022b), 2201.03736 .
  27. Y. Lemke, J. Kussmann, and C. Ochsenfeld, Efficient Integral-Direct Methods for Self-Consistent Reduced Density Matrix Functional Theory Calculations on Central and Graphics Processing Units, J. Chem. Theory Comput. 18, 4229 (2022).
  28. J. Liebert, A. Y. Chaou, and C. Schilling, Refining and relating fundamentals of functional theory, J. Chem. Phys. 158, 214108 (2023), 2301.10193 .
  29. A. J. Coleman and V. I. Yukalov, Reduced Density Matrices: Coulson’s Challenge (Springer, Berlin, 2000).
  30. Reduced‐Density‐Matrix Mechanics: With Application to Many‐Electron Atoms and Molecules, Advances in Chemical Physics, Vol. 135 (John Wiley & Sons, New York, 2007) pp. 551–574.
  31. F. Colmenero and C. Valdemoro, Approximating q-order reduced density matrices in terms of the lower-order ones. II. Applications., Phys. Rev. A 47, 979 (1993).
  32. H. Nakatsuji and K. Yasuda, Direct Determination of the Quantum-Mechanical Density Matrix Using the Density Equation, Phys. Rev. Lett. 76, 1039 (1996).
  33. D. A. Mazziotti, Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wave functions, Phys. Rev. A 57, 4219 (1998a).
  34. D. A. Mazziotti, Approximate solution for electron correlation through the use of Schwinger probes, Chem. Phys. Lett. 289, 419 (1998b).
  35. D. A. Mazziotti, 3,5‐contracted Schrödinger equation: Determining quantum energies and reduced density matrices without wave functions, Int. J. Quantum Chem. 70, 557 (1998c).
  36. D. Mukherjee and W. Kutzelnigg, Irreducible Brillouin conditions and contracted Schrödinger equations for n-electron systems. I. The equations satisfied by the density cumulants, J. Chem. Phys. 114, 2047 (2001).
  37. D. A. Mazziotti, Anti-Hermitian Contracted Schrödinger Equation: Direct Determination of the Two-Electron Reduced Density Matrices of Many-Electron Molecules, Phys. Rev. Lett. 97, 143002 (2006).
  38. J.-N. Boyn and D. A. Mazziotti, Accurate singlet–triplet gaps in biradicals via the spin averaged anti-Hermitian contracted Schrödinger equation, J. Chem. Phys. 154, 134103 (2021), 2104.00626 .
  39. S. E. Smart and D. A. Mazziotti, Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular Simulations on Quantum Computing Devices, Phys. Rev. Lett. 126, 070504 (2021), 2004.11416 .
  40. W. Kutzelnigg, Density-cumulant functional theory., J. Chem. Phys. 125, 171101 (2006).
  41. A. Y. Sokolov and H. F. Schaefer, Orbital-optimized density cumulant functional theory., J. Chem. Phys. 139, 204110 (2013).
  42. D. A. Mazziotti, Parametrization of the Two-Electron Reduced Density Matrix for its Direct Calculation without the Many-Electron Wave Function, Phys. Rev. Lett. 101, 253002 (2008).
  43. A. M. Sand, C. A. Schwerdtfeger, and D. A. Mazziotti, Strongly correlated barriers to rotation from parametric two-electron reduced-density-matrix methods in application to the isomerization of diazene, J. Chem. Phys. 136, 034112 (2012).
  44. D. A. Mazziotti and R. M. Erdahl, Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles, Phys. Rev. A 63, 042113 (2001).
  45. D. A. Mazziotti, Realization of Quantum Chemistry without Wave Functions through First-Order Semidefinite Programming, Phys. Rev. Lett. 93, 213001 (2004).
  46. N. Shenvi and A. F. Izmaylov, Active-Space N𝑁Nitalic_N-Representability Constraints for Variational Two-Particle Reduced Density Matrix Calculations, Phys. Rev. Lett. 105, 213003 (2010).
  47. D. A. Mazziotti, Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics, Phys. Rev. Lett. 106, 083001 (2011).
  48. D. A. Mazziotti, Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory, Phys. Rev. Lett. 117, 153001 (2016).
  49. R. R. Li, M. D. Liebenthal, and A. E. DePrince, Challenges for variational reduced-density-matrix theory with three-particle N𝑁Nitalic_N-representability conditions, J. Chem. Phys. 155, 174110 (2021).
  50. M. J. Knight, H. M. Quiney, and A. M. Martin, Reduced density matrix approach to ultracold few-fermion systems in one dimension, New J. Phys. 24, 053004 (2022), 2106.09187 .
  51. D. A. Mazziotti, Quantum Many-Body Theory from a Solution of the N𝑁Nitalic_N-Representability Problem, Phys. Rev. Lett. 130, 153001 (2023).
  52. D. Gibney, J.-N. Boyn, and D. A. Mazziotti, Universal Generalization of Density Functional Theory for Static Correlation, Phys. Rev. Lett. 131, 243003 (2023).
  53. D. A. Mazziotti, Purification of correlated reduced density matrices, Phys. Rev. E 65, 026704 (2002).
  54. A. J. Coleman and I. Absar, Reduced hamiltonian orbitals. III. Unitarily invariant decomposition of hermitian operators, Int. J. Quantum Chem. 18, 1279 (1980).
  55. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Mathematical Library (Cambridge University Press, 1996).
  56. A. V. Sinitskiy, L. Greenman, and D. A. Mazziotti, Strong correlation in hydrogen chains and lattices using the variational two-electron reduced density matrix method, J. Chem. Phys. 133, 014104 (2010).
  57. G. Gidofalvi and D. A. Mazziotti, Active-space two-electron reduced-density-matrix method: Complete active-space calculations without diagonalization of the N𝑁Nitalic_N-electron Hamiltonian, J. Chem. Phys. 129, 134108 (2008).
  58. S. Hemmatiyan and D. A. Mazziotti, Unraveling the Band Gap Trend in the Narrowest Graphene Nanoribbons from the Spin-Adapted Excited-Spectra Reduced Density Matrix Method, J. Phys. Chem. C 123, 14619 (2019).
  59. M. Sajjan, K. Head-Marsden, and D. A. Mazziotti, Entangling and disentangling many-electron quantum systems with an electric field, Phys. Rev. A 97, 062502 (2018).
  60. A. Raeber and D. A. Mazziotti, Large eigenvalue of the cumulant part of the two-electron reduced density matrix as a measure of off-diagonal long-range order, Phys. Rev. A 92, 052502 (2015).
  61. D. A. Mazziotti, Complete reconstruction of reduced density matrices, Chem. Phys. Lett. 326, 212 (2000b).
  62. C. Valdemoro, Approximating the second-order reduced density matrix in terms of the first-order one, Phys. Rev. A 45, 4462 (1992).
  63. T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90, 1007 (1989).
  64. J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Constrained and Appropriately Normed Semilocal Density Functional, Phys. Rev. Lett. 115, 036402 (2015).
  65. M. Weinert and J. W. Davenport, Fractional occupations and density-functional energies and forces, Phys. Rev. B 45, 13709 (1992).
  66. S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, J. Mach. Learn. Res. 17, 1 (2016).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.