Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations (2410.15590v2)

Published 21 Oct 2024 in cond-mat.mes-hall and quant-ph

Abstract: Fabrication of quantum processors in advanced 300 mm wafer-scale complementary metal-oxide-semiconductor (CMOS) foundries provides a unique scaling pathway towards commercially viable quantum computing with potentially millions of qubits on a single chip. Here, we show precise qubit operation of a silicon two-qubit device made in a 300 mm semiconductor processing line. The key metrics including single- and two-qubit control fidelities exceed 99% and state preparation and measurement fidelity exceeds 99.9%, as evidenced by gate set tomography (GST). We report coherence and lifetimes up to $T_\mathrm{2}{\mathrm{*}} = 30.4$ $\mu$s, $T_\mathrm{2}{\mathrm{Hahn}} = 803$ $\mu$s, and $T_1 = 6.3$ s. Crucially, the dominant operational errors originate from residual nuclear spin carrying isotopes, solvable with further isotopic purification, rather than charge noise arising from the dielectric environment. Our results answer the longstanding question whether the favourable properties including high-fidelity operation and long coherence times can be preserved when transitioning from a tailored academic to an industrial semiconductor fabrication technology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).
  2. Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019). URL https://doi.org/10.1038/s41586-019-1197-0.
  3. Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338 (2022). URL https://doi.org/10.1038/s41586-021-04182-y.
  4. Mądzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348 (2022). URL https://doi.org/10.1038/s41586-021-04292-7.
  5. Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343 (2022). URL https://doi.org/10.1038/s41586-021-04273-w.
  6. Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Science Advances 8, 5130 (2022). URL https://www.science.org/doi/full/10.1126/sciadv.abn5130.
  7. Weinstein, A. J. et al. Universal logic with encoded spin qubits in silicon. Nature 615, 817–822 (2023). URL https://www.nature.com/articles/s41586-023-05777-3.
  8. Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020). URL http://www.nature.com/articles/s41586-020-2171-6.
  9. Huang, J. Y. et al. High-fidelity spin qubit operation and algorithmic initialization above 1 K. Nature 627, 772–777 (2024). URL https://www.nature.com/articles/s41586-024-07160-2.
  10. Tanttu, T. et al. Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots. Nature Physics 1–6 (2024). URL https://www.nature.com/articles/s41567-024-02614-w.
  11. Dumoulin Stuyck, N. et al. Cmos compatibility of semiconductor spin qubits (2024). URL https://arxiv.org/abs/2409.03993. eprint arXiv:2409.03993.
  12. Zwerver, A. M. et al. Qubits made by advanced semiconductor manufacturing. Nature Electronics 2022 5:3 5, 184–190 (2022). URL https://www.nature.com/articles/s41928-022-00727-9.
  13. Maurand, R. et al. A CMOS silicon spin qubit. Nature Communications 7, 13575 (2016). URL https://www.nature.com/articles/ncomms13575.
  14. Camenzind, L. C. et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin. Nature Electronics 5, 178–183 (2022). URL https://www.nature.com/articles/s41928-022-00722-0.
  15. Saraiva, A. et al. Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits. Advanced Functional Materials 32, 2105488 (2022).
  16. Elsayed, A. et al. Low charge noise quantum dots with industrial CMOS manufacturing. npj Quantum Information 10, 1–9 (2024). URL https://www.nature.com/articles/s41534-024-00864-3.
  17. Neyens, S. et al. Probing single electrons across 300-mm spin qubit wafers. Nature 629, 80–85 (2024). URL https://www.nature.com/articles/s41586-024-07275-6.
  18. Dumoulin Stuyck, N. et al. Demonstration of 99.9% single qubit control fidelity of a silicon quantum dot spin qubit made in a 300 mm foundry process. In 2024 IEEE Silicon Nanoelectronics Workshop (SNW), 11–12 (2024). URL https://ieeexplore.ieee.org/document/10639218/?arnumber=10639218.
  19. Jock, R. M. et al. A silicon metal-oxide-semiconductor electron spin-orbit qubit. Nature Communications 9, 1–20 (2018).
  20. Tanttu, T. et al. Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction. Physical Review X 9, 21028 (2019). URL https://doi.org/10.1103/PhysRevX.9.021028.
  21. Semiconductor spin qubits. Reviews of Modern Physics 95, 025003 (2023). URL https://link.aps.org/doi/10.1103/RevModPhys.95.025003.
  22. Cifuentes, J. D. et al. Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays. Physical Review B 110, 125414 (2024). URL https://link.aps.org/doi/10.1103/PhysRevB.110.125414.
  23. Lawrie, W. I. L. et al. Quantum dot arrays in silicon and germanium. Applied Physics Letters 116, 080501 (2020). URL https://pubs.aip.org/apl/article/116/8/080501/38569/Quantum-dot-arrays-in-silicon-and-germanium.
  24. Scappucci, G. et al. The germanium quantum information route. Nature Reviews Materials 6, 926–943 (2021). URL https://www.nature.com/articles/s41578-020-00262-z.
  25. Yang, C. H. et al. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nature Communications 4 (2013).
  26. Cifuentes, J. D. et al. Bounds to electron spin qubit variability for scalable CMOS architectures. Nature Communications 15, 4299 (2024).
  27. Gonzalez-Zalba, M. F. et al. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor. Nano Letters 16, 1614–1619 (2016).
  28. Li, R. et al. A flexible 300 mm integrated Si MOS platform for electron- and hole-spin qubits exploration. In 2020 IEEE International Electron Devices Meeting (IEDM), 38.3.1–38.3.4 (2020).
  29. Surface codes: Towards practical large-scale quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics 86 (2012).
  30. Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array (2022). URL https://arxiv.org/abs/2212.01550. eprint 2212.01550.
  31. Blume-Kohout, R. et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature Communications 8, 14485 (2017). URL https://www.nature.com/articles/ncomms14485.
  32. Nielsen, E. et al. Probing quantum processor performance with pyGSTi. Quantum Science and Technology 5, 044002 (2020). URL https://dx.doi.org/10.1088/2058-9565/ab8aa4.
  33. Dumoulin Stuyck, N. et al. An Integrated Silicon MOS Single-Electron Transistor Charge Sensor for Spin-Based Quantum Information Processing. IEEE Electron Device Letters 41, 1253–1256 (2020).
  34. Dumoulin Stuyck, N. I. et al. Uniform Spin Qubit Devices with Tunable Coupling in an All-Silicon 300 mm Integrated Process. IEEE Symposium on VLSI Circuits, Digest of Technical Papers 2021-June (2021).
  35. Vahapoglu, E. et al. Single-electron spin resonance in a nanoelectronic device using a global field. Science Advances 7, 9158–9171 (2021). URL https://www.science.org.
  36. Vahapoglu, E. et al. Coherent control of electron spin qubits in silicon using a global field. npj Quantum Information 8, 1–6 (2022). URL https://www.nature.com/articles/s41534-022-00645-w.
  37. Chittock-Wood, J. F. et al. Exchange control in a mos double quantum dot made using a 300 mm wafer process (2024). URL https://arxiv.org/abs/2408.01241. eprint arXiv:2408.01241.
  38. Seedhouse, A. E. et al. Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control. PRX Quantum 2, 010303 (2021). URL https://link.aps.org/doi/10.1103/PRXQuantum.2.010303.
  39. NMR techniques for quantum control and computation. Reviews of Modern Physics 76, 1037–1069 (2005). URL https://link.aps.org/doi/10.1103/RevModPhys.76.1037.
  40. Dumoulin Stuyck, N. et al. Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis. Applied Physics Letters 124, 114003 (2024). URL https://doi.org/10.1063/5.0179958.
  41. Reed, M. D. et al. Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation. Physical Review Letters 116, 1–6 (2016).
  42. Steinacker, P. et al. Violating Bell’s inequality in gate-defined quantum dots (2024). URL http://arxiv.org/abs/2407.15778.
  43. Nielsen, E. et al. Gate Set Tomography. Quantum 5, 557 (2021). URL https://doi.org/10.22331/q-2021-10-05-557.
  44. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotechnology 9, 986–991 (2014). URL www.nature.com/naturenanotechnology.
  45. Hensen, B. et al. A silicon quantum-dot-coupled nuclear spin qubit. Nature Nanotechnology 15, 13–17 (2020). URL https://www.nature.com/articles/s41565-019-0587-7.
  46. Zhao, R. et al. Single-spin qubits in isotopically enriched silicon at low magnetic field. Nature Communications 10, 5500 (2019). URL https://doi.org/10.1038/s41467-019-13416-7.
  47. Struck, T. et al. Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe. npj Quantum Information 6 (2020). URL https://doi.org/10.1038/s41534-020-0276-2.
  48. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology 13, 102–106 (2018). URL http://dx.doi.org/10.1038/s41565-017-0014-x.
  49. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Materials 11, 143–147 (2012). URL http://dx.doi.org/10.1038/nmat3182.
  50. Camenzind, T. N. et al. High mobility SiMOSFETs fabricated in a full 300 mm CMOS process. Materials for Quantum Technology 1, 041001 (2021). URL https://dx.doi.org/10.1088/2633-4356/ac40f4.
  51. Bartee, S. K. et al. Spin Qubits with Scalable milli-kelvin CMOS Control (2024). URL https://arxiv.org/abs/2407.15151v1.
  52. Petit, L. et al. Spin Lifetime and Charge Noise in Hot Silicon Quantum Dot Qubits. Physical Review Letters 121, 1–8 (2018).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: