Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Probing single electrons across 300 mm spin qubit wafers (2307.04812v2)

Published 10 Jul 2023 in quant-ph and cond-mat.mes-hall

Abstract: Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid state electronic devices, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern CMOS industry. Equally importantly, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics like qubit yield and voltage variation. Spin qubits based on electrons in Si have shown impressive control fidelities but have historically been challenged by yield and process variation. Here we present a testing process using a cryogenic 300 mm wafer prober to collect high-volume data on the performance of hundreds of industry-manufactured spin qubit devices at 1.6 K. This testing method provides fast feedback to enable optimization of the CMOS-compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and probe the transitions of single electrons across full wafers. We analyze the random variation in single-electron operating voltages and find that the optimized fabrication process leads to low levels of disorder at the 300 mm scale. Together these results demonstrate the advances that can be achieved through the application of CMOS industry techniques to the fabrication and measurement of spin qubit devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (9)
  1. M. H. Devoret and J. M. Martinis, Implementing qubits with superconducting integrated circuits, Quantum Information Processing 3, 163 (2004).
  2. S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf. 1, 15001 (2015).
  3. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
  4. C. Volk, A. M. J. Zwerver, U. Mukhopadhyay, P. T. Eendebak, C. J. van Diepen, J. P. Dehollain, T. Hensgens, T. Fujita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Loading a quantum-dot based “qubyte” register, npj Quantum Inf. 5, 29 (2019).
  5. C. Gidney and M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits, Quantum 5, 433 (2021).
  6. P. W. Deelman, L. F. Edge, and C. A. Jackson, Metamorphic materials for quantum computing, MRS Bulletin 41, 224 (2016).
  7. F. Schäffler, High-mobility Si and Ge structures, Semicond. Sci. Tech. 12, 1515 (1997).
  8. C. Hu, Modern Semiconductor Devices for Integrated Circuits (Pearson, 2009).
  9. D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).
Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: