Nonlinear Gaussian process tomography with imposed non-negativity constraints on physical quantities for plasma diagnostics (2410.11454v1)
Abstract: We propose a novel tomographic method, nonlinear Gaussian process tomography (nonlinear GPT) that employs the Laplace approximation to ensure the non-negative physical quantity, such as the emissivity of plasma optical diagnostics. This new method implements a logarithmic Gaussian process (log-GP) to model plasma distribution more naturally, thereby expanding the limitations of standard GPT, which are restricted to linear problems and may yield non-physical negative values. The effectiveness of the proposed log-GP tomography is demonstrated through a case study using the Ring Trap 1 (RT-1) device, where log-GPT outperforms existing methods, standard GPT, and the Minimum Fisher Information (MFI) methods in terms of reconstruction accuracy. The result highlights the effectiveness of nonlinear GPT for imposing physical constraints in applications to an inverse problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.