Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The GUS Framework: Benchmarking Social Bias Classification with Discriminative (Encoder-Only) and Generative (Decoder-Only) Language Models (2410.08388v4)

Published 10 Oct 2024 in cs.CL and cs.AI

Abstract: The detection of social bias in text is a critical challenge, particularly due to the limitations of binary classification methods. These methods often oversimplify nuanced biases, leading to high emotional impact when content is misclassified as either "biased" or "fair." To address these shortcomings, we propose a more nuanced framework that focuses on three key linguistic components underlying social bias: Generalizations, Unfairness, and Stereotypes (the GUS framework). The GUS framework employs a semi-automated approach to create a comprehensive synthetic dataset, which is then verified by humans to maintain ethical standards. This dataset enables robust multi-label token classification. Our methodology, which combines discriminative (encoder-only) models and generative (auto-regressive LLMs), identifies biased entities in text. Through extensive experiments, we demonstrate that encoder-only models are effective for this complex task, often outperforming state-of-the-art methods, both in terms of macro and entity-wise F1-score and Hamming loss. These findings can guide the choice of model for different use cases, highlighting the GUS framework's effectiveness in capturing explicit and implicit biases across diverse contexts, and offering a pathway for future research and applications in various fields.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: