Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generated Bias: Auditing Internal Bias Dynamics of Text-To-Image Generative Models (2410.07884v1)

Published 10 Oct 2024 in cs.CV and cs.CY

Abstract: Text-To-Image (TTI) Diffusion Models such as DALL-E and Stable Diffusion are capable of generating images from text prompts. However, they have been shown to perpetuate gender stereotypes. These models process data internally in multiple stages and employ several constituent models, often trained separately. In this paper, we propose two novel metrics to measure bias internally in these multistage multimodal models. Diffusion Bias was developed to detect and measures bias introduced by the diffusion stage of the models. Bias Amplification measures amplification of bias during the text-to-image conversion process. Our experiments reveal that TTI models amplify gender bias, the diffusion process itself contributes to bias and that Stable Diffusion v2 is more prone to gender bias than DALL-E 2.

Summary

We haven't generated a summary for this paper yet.