Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Non-parametric Direct Learning Approach to Heterogeneous Treatment Effect Estimation under Unmeasured Confounding (2410.06377v1)

Published 8 Oct 2024 in stat.ME

Abstract: In many social, behavioral, and biomedical sciences, treatment effect estimation is a crucial step in understanding the impact of an intervention, policy, or treatment. In recent years, an increasing emphasis has been placed on heterogeneity in treatment effects, leading to the development of various methods for estimating Conditional Average Treatment Effects (CATE). These approaches hinge on a crucial identifying condition of no unmeasured confounding, an assumption that is not always guaranteed in observational studies or randomized control trials with non-compliance. In this paper, we proposed a general framework for estimating CATE with a possible unmeasured confounder using Instrumental Variables. We also construct estimators that exhibit greater efficiency and robustness against various scenarios of model misspecification. The efficacy of the proposed framework is demonstrated through simulation studies and a real data example.

Summary

We haven't generated a summary for this paper yet.