Question-Answering System for Bangla: Fine-tuning BERT-Bangla for a Closed Domain (2410.03923v1)
Abstract: Question-answering systems for Bengali have seen limited development, particularly in domain-specific applications. Leveraging advancements in natural language processing, this paper explores a fine-tuned BERT-Bangla model to address this gap. It presents the development of a question-answering system for Bengali using a fine-tuned BERT-Bangla model in a closed domain. The dataset was sourced from Khulna University of Engineering & Technology's (KUET) website and other relevant texts. The system was trained and evaluated with 2500 question-answer pairs generated from curated data. Key metrics, including the Exact Match (EM) score and F1 score, were used for evaluation, achieving scores of 55.26\% and 74.21\%, respectively. The results demonstrate promising potential for domain-specific Bengali question-answering systems. Further refinements are needed to improve performance for more complex queries.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.