Papers
Topics
Authors
Recent
2000 character limit reached

Navigation with VLM framework: Go to Any Language (2410.02787v1)

Published 18 Sep 2024 in cs.CV, cs.AI, and cs.CL

Abstract: Navigating towards fully open language goals and exploring open scenes in a manner akin to human exploration have always posed significant challenges. Recently, Vision LLMs (VLMs) have demonstrated remarkable capabilities in reasoning with both language and visual data. While many works have focused on leveraging VLMs for navigation in open scenes and with open vocabularies, these efforts often fall short of fully utilizing the potential of VLMs or require substantial computational resources. We introduce Navigation with VLM (NavVLM), a framework that harnesses equipment-level VLMs to enable agents to navigate towards any language goal specific or non-specific in open scenes, emulating human exploration behaviors without any prior training. The agent leverages the VLM as its cognitive core to perceive environmental information based on any language goal and constantly provides exploration guidance during navigation until it reaches the target location or area. Our framework not only achieves state-of-the-art performance in Success Rate (SR) and Success weighted by Path Length (SPL) in traditional specific goal settings but also extends the navigation capabilities to any open-set language goal. We evaluate NavVLM in richly detailed environments from the Matterport 3D (MP3D), Habitat Matterport 3D (HM3D), and Gibson datasets within the Habitat simulator. With the power of VLMs, navigation has entered a new era.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.