Synthetic Difference in Differences for Repeated Cross-Sectional Data (2409.20199v1)
Abstract: The synthetic difference-in-differences method provides an efficient method to estimate a causal effect with a latent factor model. However, it relies on the use of panel data. This paper presents an adaptation of the synthetic difference-in-differences method for repeated cross-sectional data. The treatment is considered to be at the group level so that it is possible to aggregate data by group to compute the two types of synthetic difference-in-differences weights on these aggregated data. Then, I develop and compute a third type of weight that accounts for the different number of observations in each cross-section. Simulation results show that the performance of the synthetic difference-in-differences estimator is improved when using the third type of weights on repeated cross-sectional data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.