Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Parameterized Quantum Circuits with Quantum Gradient (2409.20044v1)

Published 30 Sep 2024 in quant-ph

Abstract: Parameterized quantum circuits (PQCs) are crucial for quantum machine learning and circuit synthesis, enabling the practical implementation of complex quantum tasks. However, PQC learning has been largely confined to classical optimization methods, which suffer from issues like gradient vanishing. In this work, we introduce a nested optimization model that leverages quantum gradient to enhance PQC learning for polynomial-type cost functions. Our approach utilizes quantum algorithms to identify and overcome a type of gradient vanishing-a persistent challenge in PQC learning-by effectively navigating the optimization landscape. We also mitigate potential barren plateaus of our model and manage the learning cost via restricting the optimization region. Numerically, we demonstrate the feasibility of the approach on two tasks: the Max-Cut problem and polynomial optimization. The method excels in generating circuits without gradient vanishing and effectively optimizes the cost function. From the perspective of quantum algorithms, our model improves quantum optimization for polynomial-type cost functions, addressing the challenge of exponential sample complexity growth.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.