Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CRScore: Grounding Automated Evaluation of Code Review Comments in Code Claims and Smells (2409.19801v1)

Published 29 Sep 2024 in cs.SE, cs.AI, and cs.CL

Abstract: The task of automated code review has recently gained a lot of attention from the machine learning community. However, current review comment evaluation metrics rely on comparisons with a human-written reference for a given code change (also called a diff), even though code review is a one-to-many problem like generation and summarization with many "valid reviews" for a diff. To tackle these issues we develop a CRScore - a reference-free metric to measure dimensions of review quality like conciseness, comprehensiveness, and relevance. We design CRScore to evaluate reviews in a way that is grounded in claims and potential issues detected in the code by LLMs and static analyzers. We demonstrate that CRScore can produce valid, fine-grained scores of review quality that have the greatest alignment with human judgment (0.54 Spearman correlation) and are more sensitive than reference-based metrics. We also release a corpus of 2.6k human-annotated review quality scores for machine-generated and GitHub review comments to support the development of automated metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Atharva Naik (17 papers)
  2. Marcus Alenius (1 paper)
  3. Daniel Fried (69 papers)
  4. Carolyn Rose (32 papers)